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degree of freedom, whi
h was not in the model originally. This newdegree of freedom 
an be thought of as the string slope, whi
h is nowpromoted into a 
u
tuating dynami
al variable. Finally, we show thatthe introdu
tion of the bare mass makes it possible to renormalize themodel.
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1. Introdu
tionThe present arti
le is the 
ontinuation of a series of arti
les [1,2,3,4,5℄pursuing a program of summing planar graphs in �eld theory. Be
ause ofits simpli
ity, the theory most intensively investigated so far is the �3 the-ory, although progress has been made in extending the program to morephysi
al theories [6,7,8℄. The basi
 idea, due to 't Hooft [9℄, is to representplanar Feynman graphs on the world sheet, using a mixture of position andmomentum spa
e light 
one variables as 
oordinates. This representation,whi
h was originally non-lo
al, was later reformulated as a lo
al �eld theoryon the world sheet by introdu
ing additional non-dynami
al �elds [1℄. Theadvantage of this reformulation is that it provides a useful setup for studyingthe sum of planar Feynman graphs, sin
e one 
an then appeal to variousapproximation s
hemes familiar from �eld theory to investigate problems ofinterest.The problem we are going to investigate in this arti
le is string formationin the �3 �eld theory and the approximation s
heme we are going to use is themean �eld method. Although the mean �eld method has its limitations, wehope that at least the predi
tions it makes about basi
 dynami
al questionssu
h as string formation are qualitatively 
orre
t. In any 
ase, it is a simplemethod to use and we have nothing better available at the present.The present paper 
an be viewed as a follow up to referen
e [5℄. As su
h,it has a good deal of overlap with it, as well as with some of the earlier workon the same subje
t. This is be
ause in organizing this paper, the goal wasto present a self 
ontained treatment, whi
h should be intelligible even to areader unfamiliar with the previous work on the subje
t. When we previewthe rest of the paper below, we will try to make 
lear what is new and whatis a review of the earlier work 
ited at the beginning of this se
tion.Before getting started, it may be helpful to summarize the advan
esmade in this paper in 
omparison to [5℄. Apart from some simpli�
ationand streamlining of the treatment, there are two new features of interest.The �rst one is somewhat te
hni
al: The prefa
tor 1=(2p+) in eq.(2) forthe propagator was negle
ted in the previous appli
ations of the mean �eldmethod. In the present work, this fa
tor is taken into a

ount. This doese�e
t the details of 
al
ulations, but it does not qualitatively 
hange the �nalresults, 
on
erning, for example, string formation.The se
ond new feature is more signi�
ant. In referen
e [5℄, as well asin the work pre
eding it, the �eld theoreti
 bare mass was taken to be zero.1



Of 
ourse, in any 
ase, a non-zero mass is generated in higher orders ofperturbation theory, whi
h is 
uto� dependent and needs renormalization.This 
uto� dependen
e shows up in the expression for the ground state energy(eq.(56)), whi
h is proportional to the 
uto� parameter 1=a2. In the presentwork, we show how to introdu
e a non-zero bare mass, whi
h 
an then beused as a 
ounter term to 
an
el the 
uto� dependent part of the groundstate energy.We would like to draw the attention of the reader to the main resultsobtained in this arti
le. We show that, in the 
uto� theory prior to renor-malization, there is string formation for large enough values of the 
oupling
onstant, whereas for smaller values of the 
oupling 
onstant, the model isin the perturbative �eld theory phase. We also show that physi
al quantities
an be made 
uto� independent by introdu
ing a suitable bare mass. Fromthe string perspe
tive, the physi
al quantities we are referring to are thestring slope and the inter
ept. With the introdu
tion of mass, there is againstring formation for a range of values of mass and 
oupling 
onstant, and�eld theory phase takes over when the parameters are outside this range. Animportant problem not addressed in this paper is whether string formationobserved in the 
uto� theory persists after renormalization.In se
tion 2, we brie
y review both the rules for Feynman graphs in thelight 
one variables [9℄ and the lo
al �eld theory on the world sheet whi
hgenerates these graphs [1℄. We also dis
uss the transformation propertiesof the �elds under a spe
ial Lorentz boost, whi
h manifests itself as a s
aletransformation on the world sheet. Sin
e la
k of invarian
e under this s
alingwould imply violation of Lorentz invarian
e, as we go along, we make surethat no su
h violation o

urs. This is an abridged version of a more 
ompletedis
ussion given in [4℄.In the lo
al �eld theory dis
ussed in se
tion 2, the boundary 
onditionson the �elds were imposed by hand. In se
tion 3, a more general �eld the-ory is 
onstru
ted, where the boundary 
onditions are enfor
ed by meansof Lagrange multipliers. In addition, auxilliary fermioni
 �elds that dis-tinguish between the boundaries and the bulk are needed. To have a wellde�ned theory, we have to introdu
e two distin
t 
uto�s; one asso
iated withthe 
oordinate � and the other with �. Until se
tion 8, we will be work-ing ex
lusively with the 
uto� theory, and all the results obtained will referto this theory. The motivation for studying the 
uto� theory is that it isan interesting model in its own right and also it is an indispensible pre-liminary to renormalization. This se
tion follows referen
e [5℄ 
losely, with2



the ex
eption that, unlike in [5℄, we do not impose supersymmetry on themodel. Although the use supersymmetry is an elegant way of taking 
areof the matter-ghost 
an
ellations, in retrospe
t, ghosts do not 
ontribute inany signi�
ant way to the mean�eld 
al
ulations. In the interests brevityand simpli
ity, we have therefore de
ided to drop the ghost se
tor and writedown a non-supersymmetri
 model.The mean �eld method whi
h is at the basis of the present work is dis-
ussed in se
tion 4 from the point of view of the large D limit, where D isthe dimension of the transverse spa
e. This se
tion is largely a review of thematerial developed in the earlier work. The only thing new is a brief 
om-parison of the determinant resulting from the integration over matter �eldswith the 
orresponding result well known from string theory.In se
tion 5, the fermioni
 part of the a
tion is diagonalized, and the twofermioni
 energy levels are 
al
ulated as a fun
tion of a parameter x, whi
hserves as an order parameter. It is argued that, independent of any approxi-mation s
heme, a non-zero order parameter signals both string formation and
ondensation of Feynman graphs on the world sheet, thereby linking thesetwo phenomena. On the other hand, x = 0 
orresponds to the perturbative�eld theory phase of the model. This se
tion is a mostly a review of thematerial 
overed in the previous work.In se
tion 6, the prefa
tor 1=(2p+) in the propagator (eq.(2)), negle
tedin the previous work, is taken into a

ount in the leading order of the mean�eld approximation. As a result, the intera
tion vertex be
omes a fun
tionof the order parameter x (eq.(52)). The material 
overed in this se
tion is
ompletely new.In se
tion 7, 
ombining the results of the previous se
tions, the groundstate energy is expressed in terms of x. Minimizing this energy, we �nd thatthere is a 
riti
al value of the 
oupling 
onstant, g = g
: For g < g
, theminimum is at x = 0, whereas for g > g
, the minimum is at some x 6= 0. Itthen follows that, at g = g
, there is a transition from the perturbative �eldtheory phase to the string phase. A 
onsiderable portion of this se
tion isnew.So far, we have been studying a model where the �eld theory bare masswas set equal to zero. In se
tion 8, we show how to introdu
e a non-zerobare mass term in the leading order of the mean �eld approximation, and weshow that, if the mass is not too large, the same pi
ture as in the massless
ase emerges: There is a g
, dependent on the mass, that seperates the stringforming and perturbative phases of the model. It is also possible to use3



the bare mass as a 
ounter term to eliminate the 
uto� dependen
e of theground state energy. From the string perspe
tive, this 
orresponds to therenormalization of the inter
ept. Sin
e, in se
tion 5, we have already shownthat the string slope is already �nite, at least for a free string, this is all therenormalization that is needed. The investigation of the properties of therenormalized theory, whi
h 
ould be quite di�erent from those of the 
uto�theory studied so far, is left for future resear
h. This se
tion is 
ompletelynew.All the results obtained so far were in the leading order of the mean �eldapproximation, or what is the same thing, in the leading order of large Dlimit. In se
tion 9, we 
ompute a parti
ular 
ontribution 
oming from thenext order of the large D limit. This 
ontribution is important in that it pro-vides the kineti
 energy term for a new propagating degree of freedom whi
hwas not present in the original a
tion. As a result, the string slope, whi
hwas a 
onstant in the leading order, be
omes a dynami
al �eld whi
h 
an
u
tuate around its mean value. We end the se
tion with some spe
ulativeremarks about the possible 
onne
tion between this new dynami
al �eld andthe extra dimension in AdS/CFT 
orresponden
e [10,11℄, and how it 
ouldpossibly interpolate between \hard" and \soft" high energy pro
esses. Thisse
tion largely overlaps with the 
orresponding material in [5℄; it is in
ludedhere for the sake of 
ompleteness.Finally, Appendi
es A and B 
ontain some of the additional details of themean �eld 
al
ulations developed in se
tions 6 and 8.2. A Brief ReviewThe Feynman graphs of a massive �3 theory have a parti
ularly simpleform in the mixed light
one representation of 't Hooft [9℄. In this represen-tation, the evolution parameter, � , is x+, and the 
onjugate Hamiltonian isp�. The Minkowski evolution operator is given byT = exp(�ix+p�): (1)The notation is su
h that a Minkowski four ve
tor v� has the light 
one
omponents (v+; v�;v), where v� = (v0� v1)=p2, and boldfa
e letters labelthe transverse dire
tions. A propagator that 
arries momentum p is pi
turedas a horizontal strip of width p+ and length � = x+, bounded by two solidlines on the world sheet (Fig.1). The solid lines forming the boundary 
arry4
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Figure 1: The Propagatortransverse momenta q1 and q2, withp = q1 � q2;and the 
orresponding propagator is given by�(p) = �(�)2p+ exp �i �2p+ (p2 +m2)! : (2)More 
ompli
ated graphs 
onsist of several horizontal solid line segments(Fig.2). A fa
tor of g, the 
oupling 
onstant, is asso
iated with the beginningand the end of ea
h line segment, where the intera
tion takes pla
e. Finally,one has to integrate over the positions of the intera
tion verti
es, as well asthe momenta 
arried by the solid lines. A typi
al light 
one graph is pi
turedin Fig.2.It was shown in [1℄ that the light 
one Feynman rules des
ribed above
an be reprodu
ed by a lo
al world sheet �eld theory. The world sheet isparametrized by the 
oordinates � along the p+ dire
tion and � along thex+ dire
tion, and the transverse momentum q is promoted to a bosoni
 �eldq(�; �) on the world sheet. In addition, two fermioni
 �elds (ghosts) b(�; �)and 
(�; �) are needed. In 
ontrast to q, whi
h has D 
omponents, b and
 ea
h have D=2 
omponents. Here, D is the dimension of the transverse5



p +σ

τFigure 2: A Typi
al Graphspa
e, assumed to be even. Here and in the next se
tion, we will 
onsider�rst 
onsider the zero mass 
ase for the sake of simpli
ity, and postpone thedis
ussion of the the massive theory to se
tion (8). The a
tion on the worldsheet for the massless theory(m = 0), is given byS0 = Z p+0 d� Z �f�i d� �b0 � 
0 � 12 q02� ; (3)where the prime denotes derivative with respe
t to �. This a
tion is supple-mented by Diri
hlet boundary 
onditions_q = 0; b = 
 = 0; (4)on the solid lines, where the dot denotes derivative with respe
t to � . Itwas shown in [1℄ that if the equations of motion for q are solved subje
t tothe above boundary 
onditions, the resulting 
lassi
al a
tion reprodu
es theexponential fa
tor in eq.(2). The unwanted quantum 
ontribution�D2 det(�2�)is 
an
elled by the 
orresponding determinant resulting from integrating overghosts.The a
tion formulation des
ribed above was extensively used in the pre-vious work [2,3,4,5℄. It has, however, two defe
ts: The prefa
tor 1=(2p+) ineq.(2) is missing and a non-zero bare mass 
annot be a

omodated. Sin
ethere is no symmetry for
ing the renormalized mass to be zero, this means6



that the mass 
ounter term needed for renormalization 
annot be introdu
ed.In se
tions (6) and (8), we will show how to over
ome both of these problemsin the 
ontext of the mean �eld approximation.Finally, we would like to dis
uss brie
y the question of Lorentz invarian
e.This is a non-trivial problem, sin
e the use of the light 
one variables obs
uresthe Lorentz transformation properties of the �elds. There is, however, aspe
ial subgroup of the Lorentz group, under whi
h the light 
one 
oordinateshave simple linear transformation properties. If Li;j are the angular momentaand Ki are the boosts, the generators of this subgroup areLi;j; M+;� = K1; M+;i = Ki + L1;i; (5)where the indi
es i and j run from 2 to D + 2. It turns out that invarian
eunder all the generators, with the sole ex
eption of K1, is rather trivial [4℄.The non-trivial transformation generated by K1 
orresponds to s
aling of x+and p+ by a 
onstant u: x+ ! x+=u; p+ ! p+=u; (6)leaving the transverse momenta q un
hanged. As we go along, we will 
he
kthe invarian
e the invarian
e of our equations and our results under this s
aletransformation. However, in this paper we will not investigate the problemof invarian
e under the full Lorentz group 2Let us 
he
k the s
ale invarian
e of (2) and (3). In eq. (2), the exponentialis 
learly invariant, and the prefa
tor 1=(2p+) is the integration measurethat makes integration over p+ invariant. The a
tion (3) and the boundary
onditions (4) are also invariant if the �elds transform a

ording toq(�; �)! q(u�; u�); b; 
(�; �)! b; 
(u�; u�): (7)3. The Complete World Sheet A
tion For m=0It is possible to in
lude the boundary 
onditions of eq.(4) in the a
tionitself, rather then imposing them by hand [2,3,4℄. What follows is a 
ondensedversion of the treatment given in [3,4℄. The 
omplete world sheet a
tion inthe zero mass 
ase 
an be written as a sum of four terms:S = Sm + Sg + Sg:f + Sf : (8)2The problems of Lorentz invarian
e and renormalization are 
losely related. See [12℄for an investigation of both problems in the light 
one formalism.7



Sm, the matter a
tion, and Sg, the ghost a
tion, are given bySm = Z p+0 d� Z �f�i d� ��12q02 + �y � _q� ;Sg = Z p+0 d� Z �f�i d� �b0 � 
0 + ��b � b + � �
 � 
� : (9)Here the boundary 
onditions on the matter and ghost �elds are implementedby means of the Lagrange multiplier �elds y, �b and �
. The �eld � is a deltafun
tion on the boundaries(solid lines) and zero in the bulk, in order to ensurethat the boundary 
onditions are imposed on the boundaries and not in thebulk. We will shortly give an expli
it 
onstru
tion for � in terms of fermioni
�elds. Sg:f is the gauge �xing term given bySg:f = Z p+0 d� Z �f�i d� ��12 �� �2y2� ; (10)where � is a 
onstant and �� is 
omplementary to �; it vanishes on the bound-aries and is equal to one everywhere else. In the absen
e of this term, theintegration over over y the a
tion is invariant under a gauge transformationof the form y! y + z��;where z is an arbirary fun
tion of the 
oordinates. This gauge invarian
e
auses the fun
tional integral over y to diverge in the bulk where �� is zero;�xing the gauge eliminates this divergen
e. There is also a Faddeev-Popovtype measure fa
tor asso
iated with gauge �xing. One 
an see the need for itas follows: The integral over y is Gaussian away from the boundaries and it
an expli
itly be evaluated, resulting in a singular 
ontribution that dependson the gauge �xing parameter �. If we regulate this singular expression bydis
retizing the � 
oordinate into segments of length a0, we have a produ
tof the form Y(a0�2)�D=2:This is an unwanted fa
tor resulting from gauge �xing. It 
an be 
an
elledby introdu
ing a 
ompensating measure fa
tor in the y, or by 
hoosinga0�2 = 1: (11)From now on, we will assume that � is �xed by this relation. We wouldlike to point out that in the earlier work, for example referen
e [5℄, � was8



Figure 3: Solid and Dotted Linesleft arbitrary. It turns out that as a 
onsequen
e of eq.(28), the string slopeparameter, eq.(42) 
omes out �nite without any need of renormalization.It remains to spe
ify the fermioni
 a
tion Sf . Introdu
ing a two 
ompo-nent fermion �eld  i(�; �), i = 1; 2, and its adjoint � i(�; �), � and �� of eqs.()
an be expressed as� = 12 � (1� �3) ; �� = 12 � (1 + �3) : (12)To see how this works, it is best to dis
retize the � 
oordinate into segmentsof length a, whi
h also helps regulate the fermioni
 se
tor. This dis
retizationis pi
torially represented in Fig.3 by horizontal lines at 
onstant �, spa
eddistan
e a apart. The boundaries are marked by solid lines as before, andthe rest of the spa
e (the bulk) is �lled with dotted lines. If we identify thespin up 
omponent of the fermioni
 �eld (i = 1) with the dotted lines andthe spin down 
omponent (i = 2) with the solid lines, � and �� are then thespin down and spin up proje
tion operators. Therefore, � = 1 on solid linesand it is zero on dotted lines, as stated before, and the opposite holds for ��.We have so far introdu
ed two 
uto� parameters, a and a0. All the resultsobtained until se
tion 8 refer to the 
uto� model regularized by these twoparameters. In se
tion 8, we will show how the 
uto� dependen
e 
an beeliminated by means of mass renormalization. Unfortunately, in this paper,we will not have mu
h to say about the renormalized model.9



With these preliminaries out of the way, the fermioni
 a
tion is given bySf = Xn Z d� �i � n _ n � ~gD � n�1 n�! Z p+0 d� Z �f�i d� �i � _ � ~gD � �1 � : (13)The �rst line is the a
tion in terms of dis
retized fermions n(�) =  (na; �);and the se
ond line is in terms of 
ontinuum fermions. Sin
e the 
anoni
alanti
ommutation relations are in terms of a Kroene
ker delta in the �rst 
aseand a Dira
 delta in the se
ond 
ase, these two fermions di�er in normal-ization by a fa
tor of pa. The �rst term in the a
tion represents the timepropagation of the free fermion without spin 
ip, the solid and dotted linespropagating un
hanged. The se
ond term, in 
ipping the spin, 
onverts asolid line into a dotted line and vi
e versa. This spin 
ip represents the �3intera
tion and it is a

ompanied by the 
oupling 
onstant ~g, whi
h we haves
aled by a fa
tor of D for later 
onvenien
e. As it will be
ome 
lear later,this is ne
essary to have a non-trivial large D limit; otherwise, the theorywould be non-intera
ting in this limit. Note that, with this s
aling, largeD is the same as strong 
oupling. Now if ~g is taken to be a 
onstant, aswas done in the earlier work [3,4,5℄, then the world sheet �eld theory wouldreprodu
e only the exponential in eq.(2), and the fa
tor 1=(2p+) would bemissing. Later, we will show how to take 
are of this fa
tor in the mean�eld approximation by allowing it to be
ome a fun
tion of the dynami
alvariables.We will now rewrite the full a
tion, 
olle
ting the terms for Sm, Sg:f andSf , but ex
luding Sg. We will argue later that the in
lusion of Sg does nota�e
t the dynami
s of the problem. With this omission, S is given byS = Z p+0 d� Z �f�i d��� 12q02 + i � _ � ~gD � �1 + 12 y � _q � (1� �3) � 14�2y2 � (1 + �3) �: (14)Let us 
he
k the s
ale invarian
e of this a
tion. If under s
aling, the �elds q,y and the fermions transform asq(�; �) ! q(u�; u�); y(�; �)! y(u�; u�); (�; �) ! pu (u�; u�); � (�; �)! pu � (u�; u�); (15)10



then all the terms are invariant ex
ept the intera
tion term proportional to~g and the gauge �xing term proportional to �2. These two terms be
omeinvariant only by demanding that ~g and �2 transform by~g ! u~g; �2 ! u�2: (16)We will eventually �x �2 by setting a0�2 = 1, as in eq.(11). This brings upthe question whether the latti
e spa
ings a and a0 in the � and � dire
tionstransform under s
aling. It is unusual to assign transformation propertiesto a 
uto�; however, we will argue that in this 
ase it is quite natural. Forexample, if we split the interval from � = 0 to � = p+ in N segments oflength a, it is 
lear that under s
aling, N, being an integer, does not 
hange,and therefore, a must transform like p+. A similar argument applies to a0,so we must have a! a=u; a0 ! a0=u (17)under s
aling. This shows that �2, �xed by eq.(11), s
ales 
orre
tly. We willsee that the same is true for ~g in se
tion (6).4. The Mean�eld ApproximationThe mean�eld method as applied to this problem was developed in [3℄and [5℄. We will mainly follow the treatment given in [5℄, identifying themean �eld method with the large D limit. Unlike in [5℄ however, there willbe no supersymmetry on the world sheet. We noti
e that the a
tion (14)represents a ve
tor model, whi
h 
an be solved in the large D limit [13℄. Thestandard approa
h is to repla
e the s
alar produ
ts of the ve
tor �elds y andq, namely y � _q and y2, by their va
uum expe
tation values. The fun
tionalintegral over the remaining �elds is 
arried out exa
tly, and the resultinge�e
tive a
tion is minimized with respe
t to the va
uum expe
tation values.An eÆ
ient way of 
arrying out this program is to introdu
e two 
omposite�elds �1 and �2 by adding a term �S to the a
tion:S ! S +�S;�S = Z p+0 d� Z �f�i d� ��1(D�1 � y � _q) + �22 (D�2 � y2)� ; (18)where �1;2 a
t as Lagrange multipliers. All we have done is to rename the
omposite �elds y � _q and y2 as D�1 and D�2. The fa
tors of D are naturalsin
e ea
h of these 
omposite �elds is a sum of D terms. After this renaming,11



the Gaussian integration over y 
an be done, and the a
tion 
an be rewrittenin the following form:S + �S ! S1 + S2 + S3;S1 = Z p+0 d� Z �f�i d�  �12 q02 + �212�2 _q2! ;S2 = D Z p+0 d� Z �f�i d� ��1�1 + 12�2�2� ;S3 = Z p+0 d� Z �f�i d� �i � _ �D ~g � �1 + D2 � ��1(1� �3)� 12�2�2(1 + �3)� � :(19)In the large D limit, �1;2 and �1;2 
an be repla
ed by their va
uum ex-pe
tation values:�1 ! �1;0 = h�1i; �2 ! �2;0 = h�2i; �1 ! �1;0 = h�1i; �2 ! �2;0 = h�2i;(20)and therefore these �elds be
ome 
lassi
al in this limit. In addition, animportant simpli�
ation is a
hieved by setting the total momentum p 
arriedby the whole graph equal to zero:p = Z p+0 d� q0 = 0:This 
on�guration, whi
h 
an always be rea
hed by a suitable Lorentz trans-formation, allows us to impose the periodi
 boundary 
onditionsq(� = 0; �) = q(� = p+; �):The advantage of 
hoosing this 
on�guration is that it is translationally in-variant in both the � and the � dire
tions, and 
onsequently the 
lassi
al�elds �1;2 and �1;2 
an be set equal to 
onstants independent of 
oordinates.It then follows that A2 = �21=�2 ! �21;0=�2;0 (21)tends to a 
onstant in the limit of large D. We note that S1 in eq.(19) is thestandard string a
tion, with the slope �0 given by�02 = A24 = �21;0=4�2;0: (22)12



In general, this a 
u
tuating dynami
al �eld, so it is far from 
lear that S1represents a real string with a 
onstant slope. In the large D limit, however,sin
e A2 tends to a 
onstant, so does the slope, and, if this 
onstant is positiveand di�erent from zero, a real string has formed. We will later see that this
onstant is never negative; however, it 
ould vanish. In that 
ase, we havea zero slope string theory, whi
h is another name for a �eld theory. To
on
lude, there is string formation only if the ground state expe
tation valueof A2 is non-zero; otherwise, we have a �eld theory. Therefore, the groundstate expe
tation value of A2 serves as an order parameter that distinguishesbetween the �eld theory limit and string formation. In the leading large Dlimit, this expe
tation value will turn out to be non-zero if the parameters ofthe model are in a suitable range, endowing the string with a 
onstant non-zero slope. After the 
orre
tions to the large D limit are taken into a

ount,the string slope be
omes dynami
al and it 
an 
u
tuate.If we repla
e A2 by its 
onstant expe
tation value, the fun
tional integra-tion over q in S1 
an easily be done, with the resultS1 ! i2 DTr ln ���2� + A2�2��= �D4� (�f � �i) Z dkXn2Z ln (2�np+ )2 + A2k2! : (23)This needs a ultraviolet 
uto� in the variable k to make sense, so we introdu
ea smooth 
uto� fun
tion f(k=�) by lettingZ dkXn ln (2�np+ )2 + A2k2!! Z dk f(k=�)Xn ln (2�np+ )2 + A2k2! : (24)This expression is not yet 
onvergent, but the divergen
e is an additive 
on-stant independent of A2. Sin
e the mean�eld equations only invove thederivative S1 with respe
t to A2, we 
an safely make the subtra
tionS1(A2)! S1(A2)� S1(0);and arrive at the �nite resultS1(A2)� S1(0) = �D4� (�f � �i) p+jAj Z dk k f(k=�)� 2�23jAjp+! : (25)In any 
ase, if we did not drop the ghost a
tion Sg, this additive 
onstantwould be 
an
elled by the 
ontribution from the ghost se
tor [5℄.13



The integral in the �rst term on the right is quadrati
 in the 
uto�; forthe sake of simpli
ity, we 
ould just as well impose a sharp 
uto� and setZ dk k f(k=�) = �2:In any 
ase, a rede�nition of the 
uto� would yield the same result. In therest of the paper, we will fo
us only on the 
uto� dependent terms, and so,from now on, we will setS1 ' �D2� (�f � �i)jAj p+�2: (26)What we are doing is to study the 
uto� theory prior to renormalization.The reason for doing so is twofold: The 
uto� theory is of interest by itself;for example, in se
tion 7, we will �nd string formation for a range of thevalues of the 
oupling 
onstant. Also, we want to renormalize the groundstate energy by introdu
ing a mass 
ounter term. To do this, we have tolearn about the 
uto� dependen
e of various quantities by �rst studying the
uto� theory.Eq.(25) 
ould also be obtained by appealing to standard results fromstring theory [8,9℄. S
aling q by q! q=A;the tr ln of eq.(23) is transformed intoTr ln�� 1A �2� + A�2�� :But the 
al
ulation of this Tr ln is the same as 
al
ulating the ground stateenergy of a string with the 
onstant ba
kground world sheet metri
 given byg0;0 = A; g1;1 = 1=A; g0;1 = g1;0 = 0; (27)and the result is the same as in eq.(25). In string theory, the 
uto� dependentterm, whi
h 
ontributes to the energy per unit length, is 
an
elled by a
ounter term. The �nite term is the famous Casimir term whi
h �xes theinter
ept.Although there is this simple 
onne
tion between our model and the stan-dard string theory, we would like to emphasize that there are also signi�
ant14



di�eren
es. For example, the 
uto� dependent term in string theory is a pure
onstant and it 
an be dropped without disturbing the dynami
s. In 
on-trast, the 
uto� dependent term here is proportional to A2 = �21;0=�2;0, whi
his a dynami
al quantity. Also, in our 
ase, the 
oordinates � and � are �xedon
e for all, and unlike in string theory, there is no general reparametriza-tion invarian
e. For example, one 
annot eliminate the dependen
e on A bymapping the metri
 given by eq.(27) intog0;0 = g1;1 = 1; g0;1 = g1;0 = 0:We have so far introdu
ed two di�erent 
uto�s in the � dire
tion; namely,a0 in eq.(11) and � in eq.(24). These are in fa
t related: If, for example, themomentum spa
e 
onjugate to � is 
ompa
ti�ed, the 
orresponding period
an be identi�ed with the 
uto� �. The latti
e spa
ing a0 is then related toit by a0 = 2�� : (28)5. The Fermioni
 A
tionIn this se
tion, we will 
arry out the fun
tional integral over the fermionsin S3, eq.(19), with �1 and �2 repla
ed by their 
oordinate independentexpe
tation values, or the mean values, �1;0 and �2;0. To avoid divergen
es,we �rst regulate it by dis
retizing the � 
oordinate on a latti
e of spa
ing a.There is then a 
omplete de
oupling of the di�erent latti
e sites, and at ea
hsite, we have a two level quantum me
hani
s problem. Instead of workingwith the a
tion, it is easier to diagonalize the 
orresponding Hamiltonian.The total Hamiltonian 
an be written as a sum of N mutually 
ommutingHamiltonians, with N = p+=a:H = Xn Hn;Hn = D �~g � �1 � 12 � ��1;0(1� �3)� 12�2�2;0(1 + �3)� ��=�n : (29)A
ting on spin up and spin down states (dotted and solid lines), Hn, theHamiltonian at the site � = �n = na, redu
es to a two by two matrix:Hn ! D 12�2�2;0 ~g~g ��1;0 ! (30)15



Diagonalizing, we have the energy levelsE�n = D2 0�12�2�2;0 � �1;0 �s(12�2�2;0 + �1;0)2 + 4~g21A : (31)In general, we expe
t the level 
orresponding to the minus sign to beenergeti
ally favored; however, we will keep both options open for the timebeing.Eq.(31) gives the energy of a fermion lo
ated at a single latti
e site �n =na; the total fermioni
 energy is gotten by multiplying this by N = p+=a.Combining the fermioni
 
ontribution with those 
oming from S1 and S2,eqs.(26) and (19), the total a
tion is given byS� = Dp+(�f � �i)�� 2�a02 j�1;0j=p�2;0 + �1;0�1;0 + 12�2;0�2;0� 12a�� � 12aq�2+ + 4~g2�; (32)where we have rewritten A in terms of �'s (eq.(21)) and de�ned�� = 12�2�2;0 � �1;0:Sin
e this a
tion is proportional to D, in the limit of large D, it 
an be eval-uated using the saddle point method. This amounts to using the equationsof motion in the a
tion. Varying �� gives�2;0 = �2(�1;0 + 1a): (33)It is 
onvenient to de�ne the variable x by�1;0 = �x=a;so that �2;0 = �2a (1� x): (34)x will turn out to be positive, so we 
an drop the absolute value signs fromnow on. The equation of motion with respe
t to �+ gives��+ = �~g 1� 2xpx� x2 ; (35)16



and the � signs in this equation are 
orrelated with the � signs in eq.(31).Here, as well as in eq.(31), we have �xed the sign of ~g to be positive, whi
h 
analways be a
hieved by a rede�nition of the � signs in front of it. Substitutingthese results into eq.(32), the 
orresponding energy, related to the a
tion (32)by S� = �(�f � �i)E�;
an be written asE� = Dp+0� 2� x�� a02qa(1� x�) � 2~ga qx� � (x�)21A : (36)In the �rst term on the right, the 
uto� � has been traded for a0 through� = 2�=a0 (eq.(28)). Here, x� are the values of x that minimize the abovetotal energy for the � solutions.The eigenve
tors of the Hamiltonian Hn (eq.(29)) are also of interest.Denoting the normalized eigenve
tors 
orresponding to � signs of the energyby  b�1b�2 ! ;we have b�1 = �s 12 �1� �+p�2++4~g2� = �p1� x�;b�2 = s12 �1� �+p�2++4~g2� = px�: (37)Let us re
all the physi
al signi�
an
e of these matrix elements: The proba-bilities of having a dotted line (spin up) for the � solutions are given by(b�1 )2 = 1� x�; (38)respe
tively. Similarly, the probabilities of having a solid line (spin down)for the � solutions are given by (b�2 )2 = x�: (39)From this probability interpretation for x, it follows that0 � x� � 1; (40)17



whi
h we have already ta
itly assumed. Otherwise, for example, eqs.(35,36)would not make sense.From eqs.(37), it is easy to show that12h � (1� �3) i = h�i = x�a (41)for both � solutions. We shall see below that (eq.(42)) x is the order pa-rameter that distinguishes between �eld theory and string theory: A nonvanishing x signals string formation, whereas x = 0 
orresponds to a zeroslope string, whi
h is another name for �eld theory. The equation above
orrelates x with the expe
tation value of the fermioni
 bilinear � 2 2, so one
ould as well think of this bilinear as the order parameter. On the other handthis bilinear is the number operator that 
ounts solid lines: A non vanishingexpe
tation value for it means that a �nite proportion of the area of the worldsheet is 
overed by the solid lines; in other words, solid lines have 
ondensedon the world sheet, leading to string formation. We would like to stress thatthis 
onne
tion between 
ondensation of solid lines on the world sheet andstring formation is quite robust; it is valid independent of the approximations
heme used to 
ompute x�.In the language of Feynman graphs, 
ondensation of solid lines meansthat a single graph of asymptoti
ally in�nite order is dominating the sumover planar graphs. It is interesting to note that this was exa
tly the pi
tureproposed in the very �rst papers that attempted to dedu
e string formationfrom Feynman graphs [14,15℄.The next step is to determine x� by minimizing the total energy for ea
hsolution. Sin
e both terms on the right hand side of eq.(36) are positive forthe + solution and they have opposite signs for the � solution, we expe
tthat � solution represents the ground state. We 
annot quite 
al
ulate x�yet, sin
e ~g will turn out to depend on x, and we have �rst to determine thisfun
tional dependen
e. This will be done in the next se
tion, but sin
e, fromeq.(34) �02 = �21;04�2;0 = a �2(x�)24(1� x�) ;and taking �2 = 1=a0 (eq.(28)), then�02 = a(x�)24a0(1� x�) : (42)18



Therefore, if x� is non-zero, we 
an easily see that the slope parameter willalso be non-zero ; 
onversely, x� = 0 means that the slope is zero. Inrea
hing this 
on
lusion, we have assumed, as we have done throughout thispaper, that the ratio of the two latti
e spa
ings, a=a0, whi
h is s
ale invariant(eq.(17)), is �nite. Sin
e this relation between the two 
uto� parameters isessential for having a �nite slope, we would like to argue that it is requiredby Lorentz invarian
e. In fa
t, if we instead allowed a more general relation,say, a0 = f(a);it is easy to see that, unless f is of the formf(a) = 
 awhere 
 is a 
onstant, invarian
e under s
aling (eq.(17)) would be violated.This would in turn imply violation of Lorentz invarian
e. As a bonus, weend up with a �nite slope, with no need of renormalization. In 
ontrast, weshall see that the other parameter of string theory, the inter
ept, is 
uto�dependent and needs renormalization. We note that there is nothing in theproblem so far that �xes the ratio a0=a, and therefore, a new parameter, inaddition to the 
oupling 
onstant, has to be introdu
ed into the model. It ispossible that the imposition of full Lorentz invarian
e will eventually �x thisparameter.What about the + solution? In this 
ase, both terms are positive semidef-inite, so 
learly, x+ = 0 minimizes the energy, and the probability of having asolid line is zero. This is the (trivial) starting point of standard perturbationtheory; namely, no Feynman graphs and energy equal to zero. When higherorder terms in 1=D are taken into a

ount, we expe
t x+ to 
u
tuate andallow the formation of solid lines, thereby generating higher order Feynmangraphs. To summarize, x 
ould be non-zero only for the � solution, leadingto string formation. On the other hand, the + solution always has x = 0,
orresponding to perturbative �eld theory. The ground state energy of the+ solution is either greater than or equal to that of the � solution.6. The Intera
tion VertexAs we have stressed earlier, following eq.(13), taking ~g to be a 
onstantamounts to negle
ting the fa
tor of 1=(2p+) in the world sheet propagator(eq.(2)). We will now show that this fa
tor 
an be taken into a

ount in theleading mean �eld approximation, and as a result, ~g be
omes a fun
tion of the19
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3Figure 4: Two Verti
esvariable x. We now pro
eed to 
al
ulate this fun
tion. It turns out that, forour purposes, it is more 
onvenient to asso
iate this fa
tor 1=(2p+) with theverti
es, rather than with the propagators. Consider two intera
tion verti
es,with the propagators labeled 1,2 and 3 meeting at the vertex as shown inFig.4. In one of them, a solid line turns into a dotted line, and in the other,the reverse takes pla
e. With the �rst vertex, we asso
iate a fa
torV+ = g8 p+1 p+2 p+3 ; (43)and with the se
ond vertex, a fa
tor ofV� = g: (44)Here, g is related to the 
oupling 
onstant of the �3 intera
tion. It is easyto 
he
k that this is equivalent to assigning a fa
tor of 1=(2p+i ), i = 1; 2; 3,to ea
h of the propagators labeled by i. This assignment is not symmetri
albetween V+ and V�; but this is not a problem sin
e only the produ
tV = V+ V�matters. For example, we 
ould inter
hange the roles of these two verti
es,or we 
ould make a symmetri
al assignment at the 
ost of introdu
ing square20



roots. For the time being, the above assignment will be 
onvenient to workwith; later, we will show how to restore the symmetry between V+ and V�.At this point, one may wonder about the pre
ise relationship betweeng and the 
oupling 
onstant of the �3 intera
tion. Of 
ourse, this dependson renormalization , and therefore, to relate the 
oupling 
onstant of �eldtheory to that of the world sheet, one has to 
ompare the renormalizations
hemes used in ea
h 
ase. Here we will simply treat g as an e�e
tive 
oupling
onstant, and we will not try to 
ompare it to the �eld theoreti
 
onstant. Itis of interest to note that g is a s
ale invariant 
onstant, as 
ontrasted to ~g(eq.(16)), so it passes at least one important test for being a Lorentz s
alar. Itis also �nite (
uto� independent), at least in the lowest order approximation.This is be
ause, for example, if it depended on a in non-trivially, it 
ould notbe s
ale invariant, sin
e a transforms under s
aling (eq.(17)). So it may bemore appropriate to think of g as a renormalized 
oupling 
onstant, ratherthan a bare one. Therefore, we have to do mass renormalization (se
tion 8),but we do not have to worry about 
oupling 
onstant renormalization.Eq.(43) refers to a vertex where ea
h leg 
arries a �xed momentum p+i .This means that when we write down the vertex in the language of �eldtheory, we have to somehow express the p+'s in terms of the lo
al �elds. Todo this exa
tly is a diÆ
ult problem; however, there is a simple answer inthe leading order of the mean�eld approximation. In this approximation, we
an repla
e the right hand side by its average value:V+ ! g h 18 p+1 p+2 p+3 i: (45)To 
ompute the indi
ated average, one has to �gure out the probability of o
-
uren
e of a 
on�guration with spe
i�ed p+'s. We re
all from the last se
tionthat, in the leading order of the mean �eld approximation, the probabilityof having a dotted line is given by 1 � x and that of having a solid line byx (eqs.(38,39)). Here x is a 
onstant independent of the 
oordinates, to bedetermined by minimizing the ground state energy. Consider the 
on�gura-tion in Fig.5 of the vertex V+, where the momenta p+i dis
retized in steps oflength a as usual, with ni dotted lines asso
iated with the propagator labeledby i, and p+1 = (ni + 1)a; n3 = n1 + n2 + 1:The probability of having su
h a 
on�guration, Pn1;n2, depends only on thein
oming propagators 1 and 2, whi
h 
ompletely �x the 
on�guration. Fur-21
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Figure 5: Another Vertexthermore, in the leading order of the mean �eld approximation, the proba-bility for the o

uren
e of a 
olle
tion of solid and dotted lines is the produ
tof the probabilities for the o

uren
e of ea
h individual line. Therefore, wehave, Pn1;n2 = Pn1 Pn2; (46)where Pn, the probability for a single propagator is given byPn = x (1� x)n: (47)The hypothesis about the fa
torization of probabilities used to derive theabove results implies la
k of 
orrelation between di�erent lines. This is in fa
tthe basi
 hypothesis of the mean �eld method: To the leading order, ea
hline propagates independently in the ba
kground of the mean �eld x, and the
orrelations between di�erent lines show up only in higher order 
orre
tions.22



Putting together eqs.(45,46,47), we have,V+ = g F (x)8 ; (48)where F (x) = 1Xn1=0 1Xn2=0 Pn1;n2(n1 + 1)(n2 + 1)(n3 + 1) a3= 1Xn1=0 1Xn2=0 x2 (1� x)n1+n2(n1 + 1)(n2 + 1)(n1 + n2 + 2) a3 : (49)In Appendix A, it is shown that this sum 
an be 
onverted into a singleintegral. After this simpli�
ation, we have the following expression for V+:V+ = g x2(1� x)2 a3 Z 1�x0  1y (ln(1� y))2! dy: (50)At this point, it is possible to write down a fermioni
 intera
tion term,using V+ and V� = g. All we have to do is to repla
e the term ~g � �1 ineq.(14) by V+ � 1 2 + V� � 2 1:However, instead of this awkward looking non-symmetri
 expression, we pre-fer to use a symmetrized expression. Sin
e in 
al
ulating a general graph,V+ and V� 
ome in pairs and always in the form of the produ
t V� V+, weare free to rede�ne individual V 's as we wish, so long as the produ
t remains�xed. A symmetrized expression 
orresponds to the 
hoi
e V+ = V�. Thisamounts to setting ~g2 = a V+ V�: (51)The sudden appearen
e of a fa
tor of a in this equation requires an expla-nation. Consider a typi
al solid line (Fig.3), lo
ated at some � = �0, withfa
tors V+ and V� atta
hed at the ends of the line. As explained earlier, onehas to integrate over the position �0 of the 
oordinate. However, in derivingeq.(50) for V+, the � 
oordinate was �rst latti
ized with a spa
ing a. There-fore, instead of an integral, we really have a sum over the dis
retized positionsof the solid line. Converting this sum into an integral in the 
ontinuum limitintrodu
es a fa
tor of a througha X�n ! Z d�:23



Combining eqs.(44,50,51), we rewrite ~g as~g = gxa(1� x)  Z 1�x0  1y (ln(1� y))2! dy!1=2 : (52)We note that this expression for ~g has the 
orre
t s
aling properties, dis
ussedat the end of se
tion 3. Sin
e g and x are s
ale invariant 
onstants, ~g s
alesas 1=a (see eq.(17)), whi
h is the 
orre
t result.7. Minimizing The Ground State EnergyWe will now rewrite the ground state energy E� (eq.(36)), 
ombiningsome 
onstants to simplify the expression. We set�2 = 1=a0and de�ne the 
onstant 
 by 
 = 2�(a=a0)3=2:
 stays �nite in the limit when both 
uto� parameters a and a0 go to zero,provided that the ratio a=a0 is kept �nite. It is then 
onvenient to eliminatea0 in favor of 
 and a, and to express ~g in terms of x through eq.(52), withthe result E� = Dp+a2  
 xp1� x � 2gh(x)! ; (53)where h(x) = x3=2(1� x)1=2  Z 1�x0 1y (ln(1� y))2 dy!1=2 : (54)We make a 
ouple of observations regarding this formula: Energy, anextensive quantity, is proportional to p+, the length of the � interval, as itshould be. It is also proportional to 1=a2, and so it diverges in the limita! 0. This is not surprising, sin
e E is equal to p�, and in the frame p = 0that we have 
hosen, the produ
t p+p� is equal to the square of the mass ofthe (string) state. If we denote the mass of the lowest string state by m0,then m20 = p+E�: (55)This is the bare mass, whi
h we expe
t to be 
uto� dependent without renor-malization. In the next se
tion, we will see how this 
uto� dependen
e 
an24
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Figure 6: f(x) = x=p1� x is the dashed line and f(x) = �20 h(x) is thesolid linebe removed by introdu
ing a suitable mass 
ounter term. Finally, note thedi�eren
e in the sign of the two terms; this is the key to the existen
e ofa non-trivial minimum. Also, m20, being proportional to (p+=a)2, is s
aleinvariant (see eqs.(6) and (17)). Sin
e mass is a Lorentz invariant quantity,this is as it should be.Before pro
eeding further, we note one more simpli�
ation: Taking ad-vantage of the freedom to renormalize the 
oupling 
onstant g and to rede�nethe 
uto� parameter a, we 
an set the 
onstant 
 equal to unity, so thatE� ! Dp+a2  xp1� x � 2gh(x)! : (56)However, 
 is not 
ompletely eliminated from the problem. For example,the string slope �02 still depends on a=a0 and therefore on 
 (eq.(42)). Thebottom line is that, whether one 
alls it 
 or a=a0, one arbitrary 
onstantremains in the problem.It remains to sear
h for the minimum of E� as a fun
tion of x. In Fig.6,the �rst term in eq.(56), x=p1� x, and the fun
tion �20 h(x), the se
ondterm for g = 10, are seperately plotted against x. Both 
urves start at theorigin, and for small enough g, the �rst term dominates the se
ond termin absolute value. Therefore, for small g, the minimum of E� is at x = 0,E+ = E� = 0, and we have re
overed the perturbative �eld theory as the25
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Figure 7: The solid line represents G(x) at g=1.3 and the dashed line repre-sents G(x) at g=10ground state. Stated another way, the only solution to mean�eld equationsat small 
oupling 
onstant 
orresponds to vanishing order parameter x, andtherefore to the perturbative phase of the underlying �eld theory. As g getsbigger, there is a turning point around g ' 1:3, and past this point, these
ond term dominates. The minimum E� now o

urs at some x 6= 0, E�is negative at this minimum, and it wins over E+ = 0 as the ground state.Therefore, there is a 
riti
al value of g = g
, with g
 ' 1:3, su
h that forg < g
, the system is in the perturbative phase, and for g > g
, it is in thestring phase. In Fig.7, the quantityG = a2E�Dp+ (57)is plotted against x for g = 1:3 and also for g = 10. For the �rst value ofg ' g
, the minimum is at x = 0, and for the se
ond one, it is at x ' 0:625.As g asymptotes to in�nity, the lo
ation of the minimum asymptotes tox ' 7:06, whi
h 
oin
ides with the lo
ation of the minimum of h(x).To summarize, in this se
tion, we have seen that string formation takespla
e if the 
oupling 
onstant is larger than a 
riti
al value. However, it isimportant to realize that so far we have been talking about an unrenormalizedtheory. The two physi
al parameters asso
iated with a free string are theslope and the inter
ept, and these should be �nite. We have already seen26



∆τ

σ= σ=0 p +Figure 8: A strip of width p+ and thi
kness �� on the worldsheetfrom eq.(42) that the slope is �nite if the ratio of the two 
uto� parameters,a=a0 is �nite as a and a0 tend to zero. On the other hand, the inter
ept,whi
h is given by p+E� (eq.(55)), diverges as a ! 0 be
ause of the fa
tor1=a2 in eq.(56). We will see in the next se
tion that, this divergen
e 
an be
an
elled by introdu
ing a suitable bare mass (
ounter)term in the originala
tion.8. Non-Zero MassUp to this point, we have taken the mass parameter in the propagator(eq.(2)) to be zero. It is of 
ourse important to be able to deal with non-zero mass, sin
e in any 
ase, even if we set the bare mass equal to zero, therenormalized mass will in general be di�erent from zero. In parti
ular, aspointed out in the last se
tion, the mass squared of the lowest string state, thestring inter
ept, is 
uto� dependent. We will now show that, by introdu
inga suitable mass 
ounter term, we 
an eliminate this 
uto� dependen
e, andtune the inter
ept to any �nite value of our 
hoi
e. This should be 
ontrastedwith what happens in the 
riti
al string theory, where the inter
ept is �xed.We wish to 
ompute the 
ontribution to the world sheet a
tion of the massterm in the propagator. This 
al
ulation is greatly simpli�ed by 
onsideringa thin strip of the world sheet (Fig.8), bounded by two lines lo
ated at
onstant � and 
onstant � +�� in the � dire
tion, and extending from � = 0to � = p+ in the � dire
tion. Fig.8 shows a bun
h of dotted and solid lines inthis strip, representing propagators that propagate for an in�nitesimal timeinterval �� . The 
ontribution of the mass term to the path integral, forsmall �� , is of the form 1 + �� M;27



and this 
an be iterated in the � dire
tion to getexp ((�f � �i)M) ;so it boils down to 
al
ulating M .We will do this 
al
ulation using the mean �eld method, along lines similarto the 
al
ulation of the vertex in se
tion 6. Let the number of dotted linesin Fig.8 be n, and the number of solid lines be N � n, where N , the totalnumber of lines, is �xed by N = p+=a;where p+ is the total width of the strip. Denote the 
ontribution to M fora given value of n by Mn, and re
all that the probability of having a dottedline is 1 � x and that of having a solid line is x. To get M , we weigh ea
h
on�guration Mn by the 
orresponding statisti
al fa
tor and add:M =Xn (1� x)nxN�nMn: (58)It remains to 
al
ulate Mn, by 
olle
ting the mass dependent terms 
omingfrom various propagators. The relevant term in eq.(2) 
an be rewritten asexp � m2��2(�i+1 � �i)!! 1� m2��2(�i+1 � �i) ; (59)where �i are the � 
oordinates of the solid lines, with i = 1; 2; :::; N � n� 1.We note that, in this 
ase, the p+ in eq.(2) 
orresponds to �i+1 � �i, thedistan
e between two adja
ent solid lines. Also, we �nd it 
onvenient toadopt Eu
lidean metri
 for this 
al
ulation and therefore the fa
tor of i hasbeen dropped. Finally, to get Mn, one has to sum over the positions of thesolid lines Mn =X�i  � m22(�i+1 � �i)! : (60)This sum is evaluated in Appendix B, with the resultM = p+ m2 x2a2(1� x) ln(x): (61)Comparing this to the energy with the energy in the absen
e of bare mass(eq.(56)), we note the 
ommon fa
tors of p+ and 1=a2, but we also see thatwe have to s
ale the mass by m2 ! Dm228
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Figure 9: The dashed 
urve is G(x) for m2 = 1 and the solid 
urve is G(x)for m2 = 20so that the terms in the expression for the energy all have a 
ommon fa
tor ofD. Otherwise, the mass term would drop out in the largeD limit. Combiningeqs.(56) and (61), the total energy, in
luding the mass, isE� = Dp+a2 � x(1� x)1=2 � 2g x3=2(1� x)1=2  Z 1�x0 ln2(1� y)y dy!1=2� m2x21� x ln(x)�: (62)Sin
e x � 1, the 
ontribution of the mass term to the total energy is positive.Remembering that the sum of the other two terms was negative, we see thatthe mass term tends to raise the ground state energy, in agreement with whatone would expe
t.In Fig.9, G (eq.(57)) is plotted against x for g = 10, and for two di�erentvalues of m2: m2 = 1, the dashed 
urve and m2 = 20, the solid 
urve. Form2 = 1, the 
urve is very similar to the one in the massless 
ase: There isnon-trivial minimum around x ' 0:6. At the larger value m2 = 20, the 
urve
attens and the minimum shifts to x = 0. This means that string formationtakes pla
e only if the mass is not too large, and the 
oupling 
onstant islarge enough. Otherwise, the model is in the perturbative �eld theory phase.At this point, it is important to remember that so far, we have been talk-ing only about the 
uto� dependent part of the enegy, whi
h is proportional29



to 1=a2. Similarly, the bare mass term makes a 
ontribution proportional to1=a2 to the ground state energy. We have seen that string formation takespla
e if the 
oupling 
onstant is large enough and the mass is suÆ
ientlysmall so that ground state energy is negative. We hasten to add that allof this is before renormalization. Renormalization requires that the 
uto�dependent part of the ground state energy should be zero. We have seenabove that this 
an be arranged by suitably tuning the bare mass. Now thequestion is, is there still string formation even after renormalization? Wehave seen above that zero (
uto� dependent) ground state energy marks theborderline between the string and �eld theory phases, and so we 
annot 
on-
lude anything de�nite on the basis of what we have so far. To de
ide thisquestion, one has to go beyond the 
uto� dependent part of the ground stateenergy and 
ompute the �nite 
ontributions. We have already seen that these
ond term on right of eq.(25) is one su
h 
ontribution, but there are alsosimilar �nite terms 
oming from 
orre
tions to eq.(52) for ~g and eq.(61) forM. These 
al
ulations are rather involved and they will not be attempted inthis arti
le, and therefore, the question of whether there is string formationafter renormalization remains open. We hope to return to this problem inthe future.9. Higher Order Contributions To S1So far, we have 
omputed the leading term in the a
tion in the large Dlimit, whi
h is proportional to D. The next order term is D independent, andto 
ompute it, one has to follow the standard pres
ription of the saddle pointmethod and expand the �elds �1;2 and �1;2 around their mean value, keepingonly the quadrati
 terms. The fun
tional integrals 
an then in prin
iple bedone, produ
ing the desired term in the a
tion. This 
al
ulation was 
arriedout in [5℄; here, we will brie
y review it and also dis
uss its signi�
an
e andits renormalization.We �rst noti
e that there are two di�erent sour
es of higher order terms:Those 
oming from S1 and those 
oming from the rest of the a
tion, su
h asthe fermioni
 se
tor, ~g and the mass term. The 
ontribution 
oming fromS1 has a spe
ial signi�
an
e: It 
ontains the kineti
 energy term for a newdegree of freedom whi
h was not present in the original a
tion. The rest ofthe higher order 
ontributions do not seem to have any spe
ial signi�
an
e,so we will not 
onsider them any further.Consider the e�e
tive a
tion resulting from 
arrying out the fun
tional30



integration over q in S1(eq.(23)):S1 ! i2DTr ln ���2� + A2�2�� ;where A2 
an be split into the zeroth order term A20, whi
h is independentof the world sheet 
oordinates, plus a 
u
tuating term �A2:A2 = A20 +�A2; A20 = �21;0�2;0 = a0a x21� x; �A2 = aa0 2x� x2(1� x)2 �x: (63)We then expand in powers of �A2 in the form of a seriesS1 = S(0)1 + S(1)1 + S(2)1 + � � � (64)Sin
e �A2 is expressible in terms �x, this expansion 
an also be 
onvertedinto an expansion in powers of �x.The leading 
ontributionS(0)1 = i2DTr ���2� + A20 �2� �was already 
omputed in se
tion 4. Sin
e we are expanding around a saddlepoint, S(1)1 vanishes. The fo
us of our attention here is the term se
ond orderin �A2:S(2)1 = � iD4 Tr �(�2� � A20 �2� )�1�� (�A2)�� (�2� � A20�2� )�1�� (�A2)��� : (65)This term 
ontains both a logarithmi
ally divergent and also a �nite part.We will �rst 
ompute the divergent part, and we will later see that we donot need to know the �nite part.Rewriting it in momentum spa
e, we haveS(2)1 = � iDp+16�2 Z d2k0 I(k0)� ~A2(k0)� ~A2(�k0); (66)where � ~A2(k0), k0 = (k00; k01), is the Fourier transform of �A2(�; �), andI(k0) = Z d2k (4k20 � (k00)2)2((2k1 + k01)2 � A20(2k0 + k00)2) ((2k1 � k01)2 � A20(2k0 � k00)2) :(67)31



In the the expression for I, we have let p+ ! 1 and repla
ed the dis
retesums over the variables k1 and k01 by integrals. Clearly, this is permissiblewhen one is 
al
ulating an ultraviolet divergent term, whi
h is sensitive onlyto the large momentum limit.Next, we expand I in powers of k0. The zeroth order term was alreadyin
luded in the 
al
ulation of S(0)1 , the �rst order term vanishes, and termswith powers of k0 greater than two are 
onvergent. The logarithmi
 diver-gen
e 
omes ex
lusively from the quadrati
 terms, given below:I ' i�2A50 �A20 (k00)2 � (k01)2� Z dkk : (68)This integral is both ultraviolet and infrared divergent. The infrareddivergen
e is due to letting p+ !1; it 
an be taken 
are of by introdu
ing alower limit of roughly 1=p+ in the integral over k. To eliminate the ultravioletdivergen
e, the integral is 
uto� at the upper limit k = �, where � is thesame 
uto� used in se
tion 4 (eq.(25)), with the resultZ dkk ! ln(� p+): (69)Combining eqs.(66) and (68) and transforming ba
k to the position spa
egivesS(2)1 ' D ln(� p+)32� A50 Z p+0 d� Z �f�i d� �A20 ��� (�A2)�2 � ���(�A2)�2� : (70)This equation tells us that �x represents a new propagating degree of free-dom, with its own kineti
 energy. The promotion of a 
onstrained �eld into apropagating degree of freedom should be familiar from other two dimensionalmodels [16,17℄. Sin
e x is related to the fermioni
 bilinear � through eq.(41),it is reasonable to interpret this new degree of freedom as a bound state of apair of fermions.We would like to say a few words about the renormalization of this result.We 
an get rid of the fa
tor of D and the logarithmi
 fa
tor if we s
ale �A2by letting �A2 !  16�2D ln(� p+)!1=2 �A2:As a result, this term is now of order zero in the largeD expansion, as opposedto terms 
al
ulated in the previous se
tions, whi
h were proportional to D.32



Also, the logarithmi
 divergen
e has dissappeared. We note that, the �niteterms whi
h we have not 
al
ulated (see the dis
ussion after eq.(65)), whi
hare also zeroth order in D, will all be suppressed by this logarithmi
 fa
tor.Of 
ourse, we still expe
t 
ontributions from the higher order terms in thelarge D expansion.It may be of some interest to express these results by writing down asigma model. Sin
e the order parameter x has now be
ome a dynami
al�eld, we will rename it �, and x is now the expe
tation value of �. Afterexpressing A2 in terms of x! � throughA2 = aa0 �21� �;we 
an rewrite the res
aled version of eq.(70) in terms of �, and then 
ombineit with eq.(62) to form the sigma model:S� = Z p+0 d� Z �f�i d�  (a0a )3=2 (2� �)(1� �)1=22�4 ���02 + _�2�� V(�)! : (71)To the leading order in D, the potential V in this equation is given byV(�) = � 1p+ E�(�);and E� is the ground state energy(eq.(62)), with the argument x repla
edby �.We note that, the slope parameter is no longer a number, but it is nowgiven by �02 = a4a0 �21� �; (72)and so it be
omes a 
u
tuating dynami
al �eld. We believe that this is the
ru
ial di�eren
e between the fundamental strings of string theory and the�eld theory strings of the type developed in the present work. In string the-ory, the slope is �xed, whereas here, it is a dynami
al variable. In parti
ular,it 
an 
u
tuate and make a transition from the saddle point x 6= 0 to theother saddle point x = 0. We re
all from se
tion 5 that this latter saddlepoint 
orresponds to perturbative �eld theory. In the present work, the worldsheet 
on�guration we have 
hosen is a 
ylinder of in�nite extent in the �dire
tion. For su
h a 
on�guration, and for the 
uto� theory before renor-malization, we have shown that the string forming saddle point at x 6= 0 is33



energeti
ally favored. However, for other 
on�gurations of the world sheet,the other saddle point at x = 0 may be more important. For example, theother saddle point may 
ontribute to a world sheet 
on�guration appropriateto a s
attering pro
ess. What we have in mind is, for example, a high energyand �xed angle s
attering pro
ess, whi
h is represented by the s
attering ofthe fundamental 
onstituents (partons) of a �eld theoreti
 model. It wouldbe very ni
e if the saddle point x = 0 was dominated this pro
ess, whereasthe the other saddle point, x 6= 0 dominated the high energy Regge limit.This would then explain how two di�erent me
hanisms, one underlying the\hard" high energy s
attering and the other underlying the \soft" high en-ergy s
attering, 
ould 
oexist. Inspired by the AdS/CFT 
orresponden
e,models of this type have been 
ostru
ted [18,19,20℄. It is of interest to notethat, in these models also the string (Regge) slope is allowed to 
u
tuate.Con
lusionsThis arti
le is an extension of the earlier work [2,3,4,5℄ on summing planargraphs by putting them on the world sheet. Although as in the earlier work,our guinea pig theory is still the �3 theory and the approximation s
hemeused is still the mean �eld method, there is also quite a bit of new material. Inthe previous work, the prefa
tor that appears in the world sheet propagator(eq.(2)) had been omitted; here, we re
tify that omisssion. Also, up to now,the bare mass of the �eld � was taken to be zero; in this work, we introdu
ea non-zero bare mass into the problem. Prior to the introdu
tion of themass, a 
uto� was needed to have a well de�ned model, and some physi
alquantities, su
h as the ground state energy, depended on the 
uto�. Withthe introdu
tion of a mass 
ounter term, it be
omes for the �rst time possibleto renormalize the model by eliminating the 
uto� dependen
e.Going ba
k to the 
uto� theory, we �nd string formation for a range of thevalues of the mass and 
oupling 
onstant. For the values of these parametersoutside this range, the model goes ba
k to the original starting point, namely,perturbative �eld theory. In the spe
ial 
ase of vanishing bare mass, this isin agreement with the resuts of the previous work.In 
ontrast to the model with 
uto�, we know very little about the renor-malized model. In the future, we hope to 
ome ba
k to and study it. Itwould be interesting to �nd out whether there is string formation for anyrange of the parameters of the model.Another interesting problem left open for future resear
h is to dedu
e the34




onsequen
es of the promotion of the string slope into a dynami
al �eld. Asexplained at the end of the last se
tion, this 
ould help 
onne
t the Reggeand parton regimes of high energy s
attering pro
esses.A
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tion by~F (x1; x2) = 1Xn1=0 1Xn2=0 (1� x1)n1(1� x2)n2(n1 + 1)(n2 + 1)(n1 + n2 + 2) : (73)The original fun
tion 
an be expressed in terms of ~F asF (x) = x2a3 ~F (x1 = x; x2 = x); (74)so the problem redu
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Figure 10: A spe
ial 
on�guration of linesFinally, substituting this result for ~F in eqs.(74) and (48), we get the followingexpression for V+: V+ = g x2(1� x)2 a3 Z 1�x0 dyy (ln(1� y))2 : (77)Appendix BIn this Appendix, we will present a derivation of eq.(61), starting witheqs.(58) and (60). Instead of trying to do the statisti
al sum of eq.(58) fora general 
on�guration of solid and dotted lines, we will �rst 
onsider thesimple 
on�guration, shown in Fig.10, of one solid line at the beginning, andall the rest dotted lines. We will show that the general 
on�guration 
an berea
hed by iterating this spe
ial 
on�guration. Also re
all from se
tion 8 thatwe have a thin strip of width �� in the � dire
tion. The mass 
ontribution
oming from all 
on�gurations of this type to the path integral is given by~Z(x) = 1Xn=1Pn�1(x) 1� m2��na ! ; (78)where n is the total number of lines and we have expanded to �rst order in�� . The mean �eld ansatz, eq.(47), givesPn(x) = x(1� x)n�1; (79)and substituting in (78), we have~Z(x) = 1 + m2x��a(1� x) ln(x): (80)36



So far, we have been summing over an arbitrary number of lines. However,it will prove 
onvenient to sele
t a �xed total number n of lines from the sum.This easily a

omplished by introdu
ing a fa
tor of w that keeps tra
k of thenumber of lines, and lettingKn(x)! Kn(w; x) = xwn(1� x)n�1: (81)Eq.(80) is now repla
ed by~Z(w; x) = ~Z0(w; x) + �� ~Z1(w; x); (82)where, ~Z0 = w x1� w(1� x) ;~Z1 = m2a x ln(1� w(1� x))1� x : (83)To isolate the 
ontribution 
oming from a 
on�guration with n lines, one hasto expand in powers of w and pi
k the 
oeÆ
ient of wn.Now 
onsider a general 
on�guration of lines, su
h as in Fig.8. Su
h ageneral 
on�guration 
an be built from the spe
ial 
on�guration dis
ussedabove (Fig.10) as follows: First iterate the spe
ial 
on�guration as a geomet-ri
 series 1Xn=0 � ~Z(w; x)�n = 11� ~Z(w; x) ;and then add to this a sum over arbitray number of dotted lines given by1Xn=0wn(1� x)n = 11� w(1� x) :The result is then the 
ontribution of the general 
on�guration to the pathintegral: Z(w; x) = 1�1� ~Z(w; x)� (1� w(1� x)) : (84)We 
an now extra
t M (eq.(58)) from this result as follows: First, pi
kthe term linear in �� . And then �x the total number of lines to beN = p+=a;37



by expanding in w and pi
king the 
oeÆ
ient of wN , with the resultM =  1Xn=1(n� 1) � ~Z0�n�1 ~Z11� w(1� x)!wN = 0B� ~Z0 ~Z1�1� ~Z0�2 (1� w(1� x))1CAwN= m2x2a(1� x)  w ln(1� w(1� x))(1� w)2 !wN : (85)Expanding in powers of w gives w ln(1� w(1� x))(1� w)2 !wN = N�1Xn=1 �1� Nn � (1� x)n: (86)This result 
an be simpli�ed by noti
ing that as a! 0, N !1. Therefore,the �rst term in parenthesis on the right hand side is negligible 
omparedto the se
ond term, whi
h is proportional to N. Also, the upper limit of thesum 
an be 
hanged from N � 1 to 1. Therefore, as N !1, w ln(1� w(1� x))(1� w)2 !wN ! �N 1Xn=1 1n(1� x)n = N ln(x): (87)Substituting this, with N = p+=a, in eq.(85) for M gives eq.(61), whi
h wasto be derived.Referen
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